Given an integer n, return the number of trailing zeroes in n!.
Note: Your solution should be in logarithmic time complexity.
Credits:
Special thanks to for adding this problem and creating all test cases.
这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中10的个数,而10可分解为2和5,而我们可知2的数量又远大于5的数量,那么此题即便为找出5的个数。仍需注意的一点就是,像25,125,这样的不只含有一个5的数字需要考虑进去。代码如下:
C++ 解法一:
class Solution {public: int trailingZeroes(int n) { int res = 0; while (n) { res += n / 5; n /= 5; } return res; }};
Java 解法一:
public class Solution { public int trailingZeroes(int n) { int res = 0; while (n > 0) { res += n / 5; n /= 5; } return res; } }
这题还有递归的解法,思路和上面完全一样,写法更简洁了,一行搞定碉堡了。
C++ 解法二:
class Solution {public: int trailingZeroes(int n) { return n == 0 ? 0 : n / 5 + trailingZeroes(n / 5); }};
Java 解法二:
public class Solution { public int trailingZeroes(int n) { return n == 0 ? 0 : n / 5 + trailingZeroes(n / 5); }}
参考资料: